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Tissue Repair Response as a Function of Dose in
Thioacetamide Hepatotoxicity
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A dose-response relationship that encom-
passes the characteristics of exposure and
the spectrum of effects in a correlative
manner is the most fundamental and per-
vasive concept of classic toxicology (1).
Thioacetamide (TA), originally used as a
fungicide, is a potent hepatotoxin which
has been much studied since the first
report of its toxic properties (2-5). Earlier
literature (6-8) suggests that an obligate
intermediate metabolite of TA that binds
to proteins with the formation of acetylim-
idolysine derivatives (9) is responsible for
TA-induced hepatotoxic effects (Fig. 1).
TA stimulates DNA synthesis and mitosis
in the liver of rats at doses that produce
limited necrosis (10,11). The rise in DNA
synthesis induced by TA follows a time
sequence, which is similar to that seen after
partial hepatectomy (12). Rats treated with
50 mg TA/kg body weight undergo he3pa-
tocellular proliferation as suggested by H-
thymidine (3H-T) incorporation, which
peaks 36 hr after administration (10,13).

We previously described an autoprotec-
tion model with TA (14). The mechanism
of autoprotection is an adaptive response
characterized by sustained and controlled
hepatocyte proliferation, resulting in tissue
repair that helps to overcome massive liver
injury inflicted by the lethal dose. Tissue
repair mechanisms and hepatocellular
regeneration have been implicated in the
ultimate outcome of toxicity after injury
from a variety of chemicals including car-
bon tetrachloride (15-19) and aceta-
minophen (20). The emerging concept of
all these studies is that, after infliction of
injury, timely stimulation of tissue repair
helps to restrain the progression of toxic
injury leading to animal survival despite
massive injury from a normally lethal dose.
Interference with the tissue repair processes
(14,20-22) leads to unrestrained progres-
sion of injury, culminating in sudden
hepatic failure and death.

The preceding findings suggest that, in
addition to inflicting tissue injury, toxic
chemicals elicit a biological compensatory
mechanism of tissue repair intended to
overcome injury through tissue healing.
Because stimulation of tissue repair appears
to be a simultaneous biological response
that accompanies injury, measuring this
response in addition to quantifying injury
might be helpful in fine-tuning the predic-
tive value of dose-response relationships.
Therefore, the objective of the present work

was to test this hypothesis by developing a
dose-response relationship where tissue
repair and liver injury are two simultaneous
but opposing responses to the administra-
tion of a 12-fold dose range of TA (50,
150, 300, and 600 mg/kg). Both tissue
injury and tissue repair were measured dur-
ing a time course (6, 12, 24, 36, 48, 72,
and 96 hr) after the administration of TA.
The findings of this study suggest that
quantifying tissue injury and repair as two
dynamic and opposing responses is likely
to increase the predictive value of
dose-response curves when they are includ-
ed in dose-response paradigms.

Materials and Methods
Male Sprague-Dawley rats (175-225 g,
7-8 weeks old) were obtained from Harlan
Sprague-Dawley Inc. (Indianapolis,
Indiana) and were maintained over saw-
dust bedding free of any chemical contam-
inants for 10 days on a 12-hr photoperiod
in our central animal facility. A tempera-
ture of 21 ± 1°C and 50% relative humidi-
ty were maintained at all times. The ani-
mals had free access to water and commer-
cial rat chow (diet no. 7001; Teklad,
Madison, Wisconsin) ad libitum before,
during, and after treatment.

Thioacetamide (TA) and [3H-methyl]
thymidine (3H-T, specific activity 1.7
Ci/mmol) were obtained from Sigma
Chemical Co. (St. Louis, Missouri). The
scintillation fluid (Scintiverse SX 16-4)
was purchased from Fisher Scientific
(Baton Rouge, Lousiana). All other bio-
chemicals and chemicals were obtained
from Sigma.

After an acclimation period, the rats
were divided into four major groups and
treated intraperitoneally with TA (50, 150,
300, and 600 mg/kg) dissolved in normal
saline (0.9% NaCl). The respective con-
trols received normal saline (1 ml/kg) as a
vehicle for TA administration.

One experiment was designed to deter-
mine the lethality of TA in rats. After
administering each dose of TA (50, 150,
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Figure 1. Mechanism of thioacetamide (TA) bio-
activation leading to hepatotoxicity. MFO, mixed-
function oxidase.

300, and 600 mg/kg), we observed the rats
twice daily for 14 days, and survival/lethal-
ity was recorded in each group.

Blood was collected from the dorsal
aorta of rats under diethyl ether anesthesia at
0, 12, 24, 36, 48, 72, and 96 hr after TA or
vehicle administration, and the serum was
separated to estimate the serum enzymes ala-
nine aminotransferase (ALT; EC 2.6.1.2.)
and sorbitol dehydrogenase (SDH; EC
1.1.1.14.) as markers of liver injury using kit
no. 59 UV (ALT) and kit no. 50 UV
(SDH), respectively, from Sigma.

Portions of liver from each group col-
lected at various periods after TA treat-
ment were washed with normal saline, cut
into small slices, and fixed in phosphate-
buffered 10% formaldehyde solution for
48 hr. Then the tissues were transferred to
70% ethyl alcohol until they were
processed. After processing, these slices
were embedded in paraffin. The liver sec-
tions (5 pim thick) were stained with hema-
toxylin-eosin (H&E) for histological
examination under a light microscope.

We measured 3H-T incorporation into
hepatonuclear DNA using the procedure
of Chang and Looney (23) as modified by
Chauveau et al. (24). The DNA content of
the supernatant fraction was estimated by
the diphenylamine reaction (25).

The proliferating cell nuclear antigen
study was conducted as described by
Greenwell et al. (26). Briefly, the liver sec-
tions mounted on slides were first blocked
with casein and then reacted with mono-
clonal antibody to PCNA (Dako Corp-
oration, Carpentaria, California). The anti-
body was then linked with biotinylated
goat anti-mouse IgG antibody (Boehringer/
Mannheim, Indianapolis, Indiana), which
was then labeled with streptavidin-conju-
gated peroxidase Jackson Immunoresearch,
West Grove, Pennsylvania). Color was
developed by exposing the peroxidase-
labeled streptavidin to diaminobenzidine,
which forms a brown reaction product.
The sections were then counterstained with
Gill's hematoxylin. Go cells were blue and
did not take the PCNA stain, G1 cells were

light brown in color, S-phase cell nuclei
stained dark brown, and G2 cells had cyto-
plasmic staining with or without a speckled
nuclear appearance. We counted 1000 cells
in each liver section.

Means ± SE were calculated for all val-
ues. Statistical differences were determined
by one-way analysis of variance followed
by Duncan's multiple range test to deter-
mine which means were significantly differ-
ent from each other or from controls. In all
cases, p.0.05 was used as the statistical cri-
terion to determine significant differences.

Results
Four groups of rats were treated with a 12-
fold dose range of TA (50, 150, 300, and
600 mg/kg) and were observed for survival
and lethality in each group for 14 days
(Table 1). All rats in the groups receiving
the sublethal doses of TA (50, 150, and
300 mg/kg) survived at the end of the 14
days, whereas the group receiving the lethal
dose of 600 mg/kg experienced 100%
lethality, with all deaths occurring between
4 and 7 days.

We estimated ALT as a marker of liver
injury over time (0, 6, 12, 24, 36, 48, 72,
and 96 hr). Figure 2 shows the serum
enzyme activity at various times after the
administration of each dose of TA. In the
three groups receiving the sixfold dose
range of TA (50, 150, and 300 mg/kg),
enzyme levels increased initially and then
declined to normal, indicating liver injury
followed by recovery from that injury. The
100% animal survival in these three groups
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was consistent with the serum ALT eleva-
tion followed by decline. ALT elevation
suggests that the injury inflicted by these
three doses ofTA was similar at 12 and 24
hr. At 24 hr, however, ALT elevation was
similar in rats that received the full 12-fold
dose range of TA. After 48 hr, liver injury
in the rats that received the highest dose of
600 mg/kg progressed remarkably in an
accelerated fashion, and all these rats died
by 4-7 days. Thus, all rats receiving the
sublethal doses (50, 150, or 300 mg/kg)
survived, while the rats that received the
600 mg/kg dose did not survive. It should
be noted that, because liver injury assessed
by ALT elevation at 24 hr was similar
across the full 12-fold range of doses, nei-
ther the extent of liver injury measured at
one time point nor at multiple time points
(e.g, 0 to 36 hr) predict the ultimate out-
come of toxicity. The elevation of SDH,
measured in a similar fashion, exhibited
the same trend (data not shown).

Table 1. Fourteen-day lethality study after a single
administration of thioacetamidea

Dose (mg/kg) No. of rats % Survival % Lethality
50 10 100 0
150 10 100 0
300 10 100 0
600 10 0 100

aRoute of administration for all the doses and
saline controls was intraperitoneal. Thioaceta-
mide was dissolved in normal saline (0.09% NaCI,
1 ml/kg). Rats were observed for 14 days, twice
daily. All deaths occurred between days 4 and 7
after thioacetamide treatment.

4....

48 72 96

Figure 2. Male Sprague-Dawley rats (175-225 g) were divided into four groups. At time zero, the respec-
tive groups received intraperitoneal injections of 50, 150, 300, and 600 mg/kg thioacetamide (TA) in normal
saline (1 ml/kg). Controls received normal saline (1 ml/kg). Serum alanine aminotransferase (ALT) was
measured as a marker of liver injury over time (0, 6, 12, 24, 36, 48, 72, 96 hr) after each treatment. Results
are expressed as means ± SE for four rats in each group. Numbers above error bars indicate significant
differences from control (0 hr), 50, 150, 300, and 600 mg/kg treated groups, respectively (p.0.05). Control
ALT value: 54.3 U/I.
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Figure 3. Representative liver histopathology during a time-course after thioacetamide (TA) treatment. Top panel represents photomicrographs of liver sections
from the rats receiving 300 mg/kg TA taken at (A) 0 hr, (B) 36 hr, and (C) 96 hr after treatment. Bottom panel represents photomicrographs of liver sections from
rats receiving 600 mg/kg TA taken at (D) 0 hr, (E) 36 hr, and (F) 96 hr after treatment. c, central vein; p, pyknotic nuclei; v, vacuolization; n, areas of necrosis; f,
fibrotic tissues; m, mitosis; lOOx.

We examined the liver sections stained
by H&E for necrotic cells, extent of
inflammation, neutrophil proliferation,
and apoptotic bodies (Fig. 3). At 6 hr, cen-
trilobular cells were slightly swollen in
both the groups receiving 300 and 600
mg/kg TA, fine vacuoles had started
appearing, and sometimes pyknotic nuclei
were visible in a few cells. More distinct

evidences of necrosis were visible at 12 hr,
irrespective of the dose. The necrosed cells
were concentrated around the central vein.
The nuclei were somewhat larger in the
necrosed cells, and the cells around the
portal area were unaffected. Extensive cen-
trilobular necrosis started at 24 hr for both
300 and 600 mg/kg groups. In the cen-
trilobular area, liver-cell columns were bro-

ken up; the individual cells were separated
from each other and appeared to be crum-
bling, indicating degeneration. The injury
also started to spread toward the mid-zonal
area. Some larger adjoining periportal
tracts were damaged and necrosed.
Necrosis was very prominent and almost
the same for both groups between 36 and
48 hr. Between 72 and 96 hr, the peripor-
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tal cells in the group receiving 300 mg/kg
started showing active mitosis, in sharp
contrast to increased widespread necrosis
approaching the periportal area. Very little
mitotic activity was seen in the group
receiving 600 mg/kg.

Cell regenerative response indicated by
S-phase DNA synthesis was found to peak
between 36 and 48 hr in the group receiv-
ing the 300 mg/kg TA, but no such activi-
ty was noted in the group receiving 600
mg/kg during this time frame. Mitotic
activity did appear in the group receiving
the 600 mg/kg at 72 hr. However, it was
much attenuated and delayed, leading to
an unabated progression of injury resulting
in death due to hepatic failure. With the
300 mg/kg TA treatment, however, pres-
ence of timely and adequate mitotic activi-
ty appeared to restrain the progression of
injury, leading to recovery of animals from
TA-induced hepatotoxicity.

Figure 4 illustrates incorporation of 3H-
T into hepatonuclear DNA over time fol-
lowing the administration of each dose of
TA, measured as a marker of S-phase stim-
ulation of cell cycle. Peak 3H-T incorpora-
tion after the administration of 50 mg/kg
occurred at 36 hr, whereas treatment with
three-fold and six-fold higher doses resulted
in peak 3H-T incorporation at 48 hr. The
magnitude of DNA synthesis due to the
three- and six-fold higher sublethal doses
was significantly higher. Nonetheless, this
peak S-phase stimulation by a three-fold
higher dose of 150 mg/kg was delayed 12
hr; it occurred at 48 hr after TA adminis-
tration. With a six-fold higher dose of 300

mg/kg, although the peak DNA synthesis
was also delayed by 12 hr and occurred at
48 hr, the increase included another addi-
tional increment in DNA synthesis.
Treatment with the highest dose (600
mg/kg) however, resulted in an additional
24 hr delay and in a significantly attenuated
S-phase synthesis of DNA. Therefore, in
addition to being significantly delayed until
72 hr, the repair response was remarkably
diminished. It was apparent that increase in
TA dose leads to a dose-dependent tempo-
ral delay, and, beyond a threshold, a further
increase in TA dose yields a diminished tis-
sue repair response. It should be noted that
at the maximally tolerated dose (MTD,
300 mg/kg), maximal S-phase stimulation
was evident.

The results of3H-T incorporation (Fig.
4) were further corroborated by the PCNA
immunohistochemical staining procedure
(Figs. 5-7). Normally, most cells are in the
resting phase (Go; Fig. 6A), and a relatively
small proportion of cells are in the other
phases of cell cycle (Fig. 5), with about
3-4% in the G2 phase. After the adminis-
tration of TA (50 mg/kg), progression of
G2 cells to M phase (Fig. 5) was evident
within 12 hr. Thereafter, continued cell
cycle progression resulted in a large num-
ber of cells in G1 at 24 hr, and in S phase
at 36 hr. The maximum number of cells in
S phase was seen at 36 hr (Fig. 5) by this
method, in agreement with the peak of S-
phase stimulation (3H-T incorporation)
observed at 36 hr after TA (50 mg/kg)
administration. At 48 hr after the 50
mg/kg dose, most of the cells had pro-

gressed to the G2 and M phases. By 96 hr,
the liver returned to normal quiescence as
evidenced by the predominant number of
Go cells. With the 300 mg/kg group, a
maximum number of cells were seen in S
phase at 48 hr (Figs. 5 and 7B) after the
administration of TA. This finding is com-
mensurate with the results of 3H-T incor-
poration studies (Fig. 4). At 72 hr after TA
(300 mg/kg) treatment, most of the cells
had progressed to the G2 and M phase,
indicating that cell cycle progression was

1600 mg/kg 300 mg/kg * 50 mg/kg

a
aIU

-6
._

a0
U1

15

12

6
Hours after TA administration

3

0

0 6 12 24 36 48 72 96
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Figure 4. 3H-thymidine (3HT) incorporation into hepatonuclear DNA after thioacetamide treatment (TA).
3H-T (35 pCi) was administered 2 hr before sacrifice at each time point. Results are expressed as means ±

SE for four rats in each group. Numbers above error bars indicate significant differences from control (0
hr), 50, 150, 300, and 600 mg/kg treated groups, respectively (p.0.05). Control 3H-T value: 150.4 dpm/pg
DNA.

Figure 5. Graphical representation of cell cycle
progression as measured by proliferating cell
nuclear antigen, immunohistochemical proce-
dure. Percentage was calculated from a total of
1000 viewed cells in the centrilobular region of
the liver for each animal. Each time point had four
rats per group. Rats received a single dose of 50,
300, or 600 mg/kg thioacetamide (TA), intraperi-
toneally. Percent cells in different phases of cell
cycle were then counted during a time-course of
0-96 hr. (*)Significantly different from control
(p.0.05). Control rats received vehicle only (nor-
mal saline, 1 ml/kg, intraperitoneally).
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Figure 6. Results of the proliferating cell nuclear antigen study after intraperitoneal treatment with 50 mg/kg thioacetamide (TA). Representative photomicro-
graphs of liver sections from rats at (A) 0 hr, (B) 36 hr, and (C) 48 hr after TA treatment. Details of treatment are described in text. Go, cells with blue nuclear
staining; G1, cells with light-brown nuclear staining; S, cells with deep brown nuclear staining; G2, cells with or without speckled nuclear staining and with dif-
fused cytoplasmic staining; M, cells with diffuse cytoplasmic staining and with deep-blue chromosomal staining. Note significant S-phase stimulation at 36 hr
and continuing cell cycle progression at 48 hr.

maximally stimulated by this maximally
tolerated dose of TA. With the lethal dose
of 600 mg/kg, a decrease in G2 cell popu-
lation, without any discernible increase in
M-phase cells, was observed between 6 to
12 hr. The maximum number of cells seen
in S phase at 72 hr (Fig. 5 and Fig. 7E)
after administration of TA (600 mg/kg)
was several fold lower than observed after
either of the two lower doses (36 hr for 50
mg/kg and 48 hr for 300 mg/kg). These
PCNA findings correspond well with the
results of the H-T incorporation studies.
The remarkable delay in the onset and
marked attenuation in S-phase stimulation
in the rats receiving the lethal dose should
be noted (Figs. 5 and 7).

Discussion
The ability of liver tissue to respond to tis-
sue injury by stimulated hepatocellular
regeneration has been demonstrated for TA
(13), carbon tetrachloride (16,17,27), aceta-
minophen (20), and a number of additional
structurally and mechanistically dissimilar
chemicals (27-30). Tissue repair is a biolog-
ical response that accompanies chemical-
induced injury (14,19,27,28). Therefore,
measuring this response in a dose-depen-
dent and a temporal manner in parallel with
injury may provide new insights on the use
of dose-response relationships in predictive
toxicology and risk assessment.

The objective of the present study was
to test the hypothesis that quantifying tis-

sue repair response along with injury in
response to a toxic chemical should yield
greater insight into the mechanism of toxi-
city on the one hand, and increase the use-
fulness of the standard dose-response para-
digm on the other. Because these are two
simultaneous dynamic events, they should
be measured during a time-course rather
than at one single time point. Liver injury
and tissue repair were the two parallel but
opposing responses measured and were
used as predictors of regression or progres-
sion of liver injury, leading to either ani-
mal recovery or death, respectively.

A comparison of serum enzyme eleva-
tion as an index of liver injury provides an
interesting picture (Fig. 2). During early
time points, injury due to the sublethal
doses (50, 150, and 300 mg/kg) was
greater than that by the lethal dose (600
mg/kg), particularly at 12 hr. Liver injury
from the highest dose was not significantly
different from that inflicted by the lower
three doses until 48 to 72 hr. Light
microscopy of the liver sections in the
groups receiving 300 and 600 mg/kg
revealed that injury began at about 6 hr in
both the groups. Injury was maximal in the
group receiving 600 mg/kg between 36
and 48 hr, as evidenced by severe cen-
trilobular necrosis, vacuolation, and con-
gestion, while it was maximal between 24
and 36 hr in the group receiving the 300
mg/kg (Fig. 3). As expected, infiltration of
polymorphonuclear cells was evident at

this time as a mechanism for cleaning dead
cells and tissue debris from the lobules.
Thereafter, the rats receiving 600 mg/kg
experienced remarkably accelerated pro-
gression of injury, whereas the rats receiv-
ing 50, 150, and 300 mg/kg experienced
equally remarkable recovery from injury.

Tissue repair indicated by the S-phase
DNA synthesis (Figs. 4-7) explains this
dichotomy. After the administration of the
50 mg/kg dose, 3H-T incorporation peaks
at 36 hr indicating maximum DNA syn-
thesis at this point. These rapidly dividing
cells form new resilient hepatic parenchy-
mal cells that replace the dead cells, there-
by restoring hepatolobular architecture and
function. As the dose of TA increases, tis-
sue repair increases in magnitude and
intensity in a dose-related manner until a
threshold is reached (300 mg/kg). Increasing
the dose beyond this threshold to 600
mg/kg does not yield another increment in
the magnitude of tissue repair response.
Instead, two significant adverse events
ensue: the repair response is significantly
delayed, and repair response is significantly
attenuated. Therefore, delayed and dimin-
ished tissue repair fails to restrain the pro-
gression of liver injury (600 mg/kg), while
prompt and adequate repair response aids
in regression of liver injury and animal
recovery (50, 150, and 300 mg/kg) through
restored hepatic structure and function.

The progressive phase of injury due to
the 600 mg/kg treatment is evident only
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Figure 7. Results of the proliferating cell nuclear antigen study after intraperitoneal treatment with 300 and 600 mg/kg thioacetamide (TA). Representative pho-
tomicrographs of liver sections from rats at (A) 0 hr, (B) 48 hr, and (C) 72 hr after TA (300 mg/kg) treatment and (D) 0 hr, (E), 72 hr and (F) 96 hr after the higher
dose of TA (600 mg/kg). Details of treatment are described in text. GO' cells with blue nuclear staining; G1, cells with light-brown nuclear staining; S, cells with
deep-brown nuclear staining; G2, cells with or without speckled nuclear staining and with diffused cytoplasmic staining; M, cells with diffuse cytoplasmic stain-
ing and with deep-blue chromosomal staining. Significant S-phase stimulation with 300 mg TA/kg (B) is contrasted with remarkably attenuated and delayed S-
phase stimulation with 600 mg TA/kg (E).

after 48 hr when a dose-related increase in
tissue repair fails to manifest. Therefore,
the appearance of liver injury is not dose-
related until after failure in exacting tissue
repair is evident. At 12 hr, injury due to a
6-fold dose-range is the same, while at 24
hr there is no difference in injury due to a
12-fold dose-range. This is significant
because it is inconsistent with the widely
accepted paradigm of "high dose yielding
greater metabolic activation" and therefore
higher toxicity. If this were true, greater
liver injury commensurate with the higher

dose should have been evident during the
first 36 hr, but this does not occur.
Although the mechanism underlying this
observation merits experimental validation,
a possible explanation is worthy of consid-
eration. Because the mechanism of TA
hepatotoxicity is via the formation of a sul-
foxide, which is thought to be metabolized
to the reactive metabolite TA sulfone, it is
possible that a dose of 600 mg/kg of TA
also exerts an inhibition on the metabolism
of TA sulfoxide to the reactive sulfone.
This may happen because, after intraperi-

toneal administration, high levels of TA
are achieved rapidly and are then subse-
quently metabolized via the mixed func-
tion oxidases to TA sulfoxide (31).
However, because the subsequent metabo-
lism of the sulfoxide to the reactive metabo-
lite TA sulfone is also mediated by the same
enzyme system(s), the relatively high levels
of TA, following a 600 mg/kg dose, may
inhibit the formation of the reactive species.
Examples of substrate inhibition mechanism
are available in the published literature.
Thiobenzamide, a closely related aryl struc-
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fibM-
tural analog ofTA, was shown to inhibit the
metabolism of thiobenzamide sulfoxide to a
reactive intermediate as the dose of thioben-
zamide was increased (32. Another exam-
ple of such inhibition of bioactivation is
provided by the inhibition of benzene
metabolism by phenol (33). Although this
mechanism needs further scrutiny, it offers a
logical explanation for insignificant injury at
early time points after administration of a
high dose.

Another fascinating observation of this
study is the dynamic relationship between
the tissue repair response and the progres-
sion of injury. It is only after failure to elic-
it a prompt tissue repair response that an
accelerated progression of liver injury
becomes evident, culminating in liver fail-
ure and death. Tissue repair due to a six-
fold dose range peaks between 24 and 48
hr (Fig. 7), although with 600 mg/kg, it is
delayed and significantly decreased. Thus,
a failure in timely and adequate appearance
of tissue repair leads to an unrestrained
progression of injury in the 600 mg/kg
treated group.

These findings have a potentially
remarkable impact on the way we conduct
risk assessment and predictive toxicology
to protect environmental and public
health. Significant advances in the under-
standing of mechanisms by which toxic
chemicals inflict injury enable us to predict
with a degree of confidence that a given
toxic chemical or physical agent will or will
not inflict tissue injury under a given set of
exposure circumstances. However, the
finding that the ultimate outcome of that
injury is a result of the dynamic and
opposing interaction between two biologi-
cal responses, inflicted tissue injury and
stimulated tissue repair, suggests that a
greater understanding of the underlying
biology is essential before achieving greater
precision in predictive toxicology and risk
assessment. Of immediate relevance in this
regard are two important considerations.
At least two levels of threshold doses can
be suggested. One threshold exists for
mechanisms, above which cell necrosis will
occur (28) and tissue repair is stimulated.
A second, higher threshold dose exists,
above which the biological compensatory
response of cell division and tissue repair
are compromised in two distinct ways: a
significant latency in stimulating the tissue
repair response, and a significantly dimin-
ished response. The inevitable combined
effect of this compromise is the unre-
strained progression of tissue injury.

In between the two threshold doses,
there is a dose-related incremental biologi-
cal compensatory mechanism that effec-
tively restrains tissue injury, permitting
recovery from tissue injury. As stimulated
cell division and tissue repair are the foun-

dations of the biological compensatory
response (28,29), this observation suggests
the possibility of therapeutic intervention
(28) in overcoming tissue injury, regardless
of the mechanism or the extent of initial
infliction of that injury.

Another consideration is the ongoing
debate on the concept of the maximally tol-
erated dose (MTD) used in long-term stud-
ies such as cancer bioassays (34,35). MTDs
are likely to maximally stimulate cell prolif-
eration. In our present acute toxicity study,
300 mg TA/kg is likely to represent the
MTD, a dose associated with maximally
stimulated cell division. Repeated exposure
to the MTD is likely to result in greater
number of errors in DNA replication,
thereby increasing the chances of cancer.
Our findings may provide mechanistic
basis for a scientific reevaluation of the con-
tinued use ofMTDs in cancer bioassays.

The dynamic interplay of tissue repair
and injury responses in determining the
ultimate outcome of toxicity can be stated
in a biologically based, empirical mathe-
matical model:

Outcome =f(Repair, injury)
Outcome = {Repair(t) - Injury(t)ldt
Outcome = {Repair(t) X Wr (t) - Injury(t)

x Wi (t)ldt

where W;(t) is the weight given to repair
(cell division), Wj(t) is the weight given to
injury (cell death). We suggest that, for a
given dose, the ultimate outcome of injury
is a function of the net difference between
repair and injury, and that this difference
can be integrated. This model may provide
greater precision in risk assessment because
this model is biologically based and it takes
into account the dynamic nature of tissue
repair and tissue healing processes. If
experimentally validated, this concept
might be more useful in improving the
current paradigms of predictive toxicology
and the science behind it. We plan to test
this model in our future experiments.
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